Document Type

Article

Publication Date

January 2007

Abstract

Since the mid 1990s populations of non-native apple snails (Ampullariidae) have been discovered with increasing frequency in the continental United States. Given the dramatic effects that introduced apple snails have had on both natural habitats and agricultural areas in Southeast Asia, their introduction to the mainland U.S. is cause for concern. We combine phylogenetic analyses of mtDNA sequences with examination of introduced populations and museum collections to clarify the identities, introduced distributions, geographical origins, and introduction histories of apple snails.Based on sampling to date, we conclude there are five species of non-native apple snails in the continental U.S. Most significantly, we recognize three species within what has been called the channeled apple snail: Pomacea canaliculata (California and Arizona), Pomacea insularum, (Florida, Texas, and Georgia) and Pomacea haustrum (Florida). The first established populations of P. haustrum were discovered in the late 1970s in Palm Beach County Florida, and have not spread appreciably in 30 years. In contrast, populations of P. insularum were established in Texas by 1989, in Florida by the mid to late 1990s, and in Georgia by 2005, and this species continues to spread rapidly. Most introduced P. insularum haplotypes are a close match to haplotypes from the Río Uruguay near Buenos Aires, indicating cold tolerance, with the potential to spread from Florida, Georgia, and Texas through Louisiana, Alabama, Mississippi, and South Carolina. Pomacea canaliculata populations were first discovered in California in 1997. Haplotypes of introduced P. canaliculata match native-range haplotypes from near Buenos Aires, Argentina, also indicating cold tolerance and the potential to establish farther north.The term "channeled apple snail" is descriptive of a morphology found in many apple snail species. It does not identify a single species or a monophyletic group. Clarifying species identifications permits a more accurate assessment of introduction histories and distributions, and provides a very different picture of the tempo and pattern of invasions than was inferred when the three species with channeled sutures were considered one. Matching introduced and native-range haplotypes suggests the potential for range expansion, with implications for native aquatic ecosystems and species, agriculture, and human health.

Included in

Biology Commons

Share

COinS