Mass spectrometry and biochemical analysis of RNA polymerase II: Targeting by protein phosphatase-1

Document Type


Publication Date



Transcription of eukaryotic genes is regulated by phosphorylation of serine residues of heptapeptide repeats of the carboxy-terminal domain (CTD) of RNA polymerase II (RNAPII). We previously reported that protein phosphatase-1 (PP1) dephosphorylates RNAPII CTD in vitro and inhibition of nuclear PP1-blocked viral transcription. In this article, we analyzed the targeting of RNAPII by PP1 using biochemical and mass spectrometry analysis of RNAPII-associated regulatory subunits of PP1. Immunoblotting showed that PP1 co-elutes with RNAPII. Mass spectrometry approach showed the presence of U2 snRNP. Co-immunoprecipitation analysis points to NIPP1 and PNUTS as candidate regulatory subunits. Because NIPP1 was previously shown to target PP1 to U2 snRNP, we analyzed the effect of NIPP1 on RNAPII phosphorylation in cultured cells. Expression of mutant NIPP1 promoted RNAPII phosphorylation suggesting that the deregulation of cellular NIPP1/PP1 holoenzyme affects RNAPII phosphorylation and pointing to NIPP1 as a potential regulatory factor in RNAPII-mediated transcription. © 2010 Springer Science+Business Media, LLC.

This document is currently not available here.