Wolf Snout And Other Anomalies In Monovular Twins: A Case report

W. Montague Cobb
Howard University

Follow this and additional works at: http://dh.howard.edu/reprints
Part of the Medicine and Health Sciences Commons

Recommended Citation
Cobb, W. Montague, "Wolf Snout And Other Anomalies In Monovular Twins : A Case report" (1934). Faculty Reprints. Paper 70.
http://dh.howard.edu/reprints/70
"Wolf Snout" and Other Anomalies in Monovular Twins: A Case Report*

W. Montague Cobb, M.D., Ph.D.
Associate Professor of Anatomy, Howard University; Fellow in Anatomy, Western Reserve University

History

In February, 1929, premature monovular male twins presenting developmental anomalies here described were delivered in Freedmen's Hospital. An interval of 10 minutes separated the births. Both infants cried spontaneously. The first infant, Dee, weighed 4 lbs. 4 oz. and lived 25 hours, 15 minutes. The second infant, Dum, weighed 4 lbs. and lived 8 hours, 20 minutes. Autopsies were not performed and the causes of death were not definitely determined. The remains were transferred to the Anatomical Department of Howard University where they were recently studied.

The fetal membranes consisted of two amnias and a single chorion attached to a large placenta into which both cords were peripherally inserted. This finding and the facts that the infants were of the same sex, nearly the same size, and exhibited an external developmental defect of similar character and degree, were together considered strong evidence of uniovular origin.

The mother was an American Negro of 23 years. She had previously borne three children, all of whom were "deformed" and soon died, and had suffered one miscarriage. The nature of the "deformities" could not be learned. The probable duration of pregnancy in the case of the present twins was 8 lunar months. Other significant history was not available. The mother's Wassermann reaction, at first negative, became strongly positive after provocative stimulation.

Physical Findings

In size, as in weight, Dee slightly exceeded Dum. Although complete sets of dimensional measurements and organ weights were taken, the data are not tabulated because they do not show additional significant or reliable differences between the two infants.

Fig. 1. Bilateral total cheilognathoschisis (wolf snout) with absence of the middle segment of the upper lip.

*Presented before the American Association of Physical Anthropologists meeting in New York City, May 9, 1934.

†Obst. No. 285, 1929; Births Nos. 239 and 245, 1929.
it in shape. This area was the outer surface of a prominence which appeared to be partially folded behind the central incisor. The shape and location of this prominence suggested that it represented the dental sac of the lateral incisor. Beside the right medial incisors there were no indications of laterals.

The lip was totally absent over the premaxillary area. As a result the gum above the dental sacs was separated from the broad tip of the nose only by a narrow groove covered with skin. The portion of the palate formed by the lateral palatine processes was intact. Demonstrable reduction in size of the maxillae was not present.

Laterally, facial development approached the normal. The outer segments of the upper lip were correctly formed and the lateral three fourths of the vestibules of the nostrils were well modelled. The inner fourth of the nasal vestibules was also distinctly outlined but the outer and inner portions were interrupted by thinned notch-like areas. These were more marked in Dee than in Dum, and apparently were secondary defects due to stretching by the forward and slightly upward projection of the unrestrained premaxillary region.

The glabrous and villous portions of the mucous membrane of the lips were distinctly demarcated. The lateral segments of the upper lips appeared slightly hypertrophied in comparison with the lower lips. The natural borders of the lateral segments formed slightly obtuse angles with those bounding the gap, thus making it appear as though a slice had been removed from the upper lip. The skin and mucous membrane had united over the abnormal margin. This mucous membrane showed from below upward on the face, the glabrous portion, the pars cillosa and internal mucosa. Only the latter and skin were visible at the junction of the lips to the nasal vestibules. There was no secondary cutaneous anchorage of the lateral lip segments to a receded maxilla.

The tissue deficiency in the upper lips was negligible. The sum of the lengths of the external mucous membrane of the upper segments equaled the length of the lower lip in both infants. The tissue deficiency of the external nares was least slightly greater. The medial nasal processes had the appearance of having been pushed through the front of the face and so prevented proper fusion of the facial components.

It was clearly evident that the aborted components were the medial nasal processes and their derivatives the medial palatine processes. These elements were fused in the midline but had been symmetrically inhibited at their periphery. No lip had formed from the medial nasal processes and there had not been sufficient growth to accommodate properly the lateral incisors in the median palatine processes. Consequently the premaxillary element had remained widely separate from the palate, a hiatus left between the portions of the lip formed from the maxillary processes, and the vestibules of the nostrils secondarily divided by the forward stretching of the independent central process.

Great Vessels: The patterns of the great venous channels which converge to the heart were of the common type and similar in the twins. The great arterial trunks presented unusual anomalies.

In both infants, the common carotid arteries arose together and the subclavian arteries arose together, Fig. 2. The common carotids passed upward in front of the great veins of the neck, and the right subclavians passed behind the oesophagus. There was no innominate artery in either infant. The twins differed in that the arch of the aorta, that segment extending between the origins of the carotid and subclavian arteries, was absent in Dum. The figures show clearly, however, that this element was reduced even in Dee, an observation which alone would not arouse much interest.

Heart: The foramina ovalia showed similar expected patency. There was no defect in the interventricular septum of either heart, the aortic and pulmonary trunks thus being completely separate at their origin. The coronary arteries in both hearts were derived from the aortic root.

Kidneys: The kidneys and their vessels in Dum showed no abnormal features. The left kidney of Dee was normal. The right kidney of Dee, Fig. 4, was congenitally displaced and lay over the bifurcation of the aorta. The hilus was directed anteriorly, having retained its primitive position. The blood supply was from a renal artery given off from the aorta just above the inferior mesenteric artery. No adventitious vessels were noted. A single renal vein which emerged from the hilus at the same horizontal level at which the artery entered, emptied into the left renal vein just lateral to the left side of the aorta. The ureter proceeded directly downward from beneath the vessels. The right kidney bore a Y-shaped impression of the bifurcation of the aorta and inferior vena cava posteriorly and an impression of the left ureter laterally.

Lungs: The right lung of Dee had four lobes. The superumerary unit was an apical division of the upper lobe.

Testes: Both testes of Dum and the left testis of Dee had descended into the scrotum. The right testis of Dee lay just before the internal abdominal ring.

Additional: To detect further resemblances or dissimilarities between the twins, a few selected features were compared. The occipital hair whorls had the same general pattern but differed distinctly in certain details‡.

‡The photographic records are available in our files.
Fig. 2. Anomalous origins of common carotid and right subclavian arteries. Absence of aortic arch (Dum).
7. L. pulmon, art. 8. R. pulmon, art.

Fig. 3. Diagram to show embryonic origin of anomalies in Figure 2. A. Primitive pattern with left and right aortic arches complete. B. Usual mode of formation of right subclavian from proximal portion of right aortic arch. C. Anomalous formation of right subclavian from distal portion of right aortic arch. D. Upward shift of right subclavian on aortic arch to position near left subclavian. Also, mode of formation of single origin for both common carotids.
The configuration of the four external ears showed only individual variation.

The femoral arterial complexes were largely similar. The lateral circumflex artery arose from the profunda on both sides in Dum and Dee. The medial circumflex was derived from the femoral on both sides in Dum and on the right in Dee. This vessel arose from the profunda on the left in Dee. In Dum there was on the right an accessory vessel which arose from the femoral and accompanied the descending branch of the lateral circumflex.

The lungs, livers, spleens, and thymi of the two infants differed perceptibly in form as well as in size.

Discussion

Face: The occurrence of clefts in the lip or palate in each individual of twins is very rare. Lévy describes a case and mentions those of Appert and Cargile. Reports of the latter authors were not available. Lévy's case, like ours, was of premature male monovular twins of eight months, with separate amnia but sharing one placenta. Each of the infants had right unilateral hare-lip and one had also a palatine fissure. Both left the hospital in good condition on the twenty-fifth day. The mother's Wassermann was negative.

No additional cases are cited in five statistical surveys. In children of the same parents Haug found two individuals affected thirty-two times, three individuals once, and four individuals three times. Three of the cases in Peron's series were in twins of whom the other member was normal. The sex was the same in one of these pair. No case was encountered in which the anomalies exactly corresponded with those described here. The hereditary occurrence of clefts of the lip and palate is placed between 15 and 20 per cent of cases by various authors. Because of a positive history in 35 per cent of his cases Peron concluded that lues was an important contributory factor. Davis discounted low mentality and social status as predisposing causes. Similar deformity in monovular twins affecting other parts of the body is not uncommon.

Cadenat offers an explanation of the pathogenesis of the defects in our specimens. He states that in the earliest stages of development the face and medial nasal processes are supplied by the cerebral branches of the internal carotid. Later with the invasion of the musculature by the facial nerve and artery there is a change in blood supply to the external carotid. At the same time the internal carotid withdraws to become specialized for the supply of the enormously developing brain. He remarks that Tandler has shown in a fetus with bilateral total cleft that the primitive septal branch from the internal carotid is well developed and supplies the median tubercle. Since it has become established that embryonic events must occur at specific times or the regions involved will be abnormal or retarded, it may be conceived that if for any reason the medial nasal processes should not fuse with the maxillaries in those very busy weeks (5th through 8th) of embryonic life when so many organs are passing through critical stages, the median tubercle will thereafter suffer a deficiency in blood supply and remain permanently dwarfed. It is difficult, nevertheless, to admit of blood vessels withdrawing from a region as long as there is anything for them to supply.

1The photographic records are available in our files.

Fig. 4. Congenital displacement of right kidney, with anterior position of hilus, and right renal vein emptying into left renal vein.

Veau affirms that although the median tubercle forms the middle segment of the upper lip, the latter derives its muscle, blood and nerve supply from the maxillary process. By elimination, skin and mucosa only are left to be formed from the median process. With a restricted blood supply it is possible that this segment might become inhibited altogether as in our specimens. Veau seems convinced, however, that the median tubercle does contribute perhaps all of the premaxillary
bone, including the lateral incisors. He in-
cludes a review of the controversy on the
subject§. It is still being investigated.

The pathogenesis of these defects thus
remains obscure. Their occurrence in families
and in monovular twins seems to indicate
genetic factors. The presence of a graded
series of the malformations in a litter of
puppies10 suggests the possibility of Mendelian
inheritance, since multiple ova are released at
an ovulation in dogs. Keith was unable to
produce the defects in lion cubs by altering the
nutritive conditions10.

Great Vessels: Normally the right sub-
clavian artery is formed as far as its segmental
unit, by the proximal portion of the right
aortic arch, and the distal portion of this arch
disappears, Fig. 3b. When the proximal
portion of the right arch disappears, the distal
portion contributes to the right subclavian and
thus gives the latter an anomalous origin from
the (left) aortic arch, Fig. 3c. In such cases,
obviously, there can be no innominate artery.
Thomson found such an origin for the right
subclavian in 1 per cent of 500 cases||.

Due to subsequent developmental changes
the right subclavian may migrate any distance
up the aorta. In our cases the artery has
attained the level of its fellow of the left side.
The comprehensive monograph of Holzapfel11
and the case report of Cobey12 furnish details
of the embryonic mechanics of this process.

It is apparent that a high fusion of the
primitive ventral aortae (common carotids) or
a low origin of the fourth left aortic arch (arch
of the aorta) would produce a common origin
of the two common carotids, such as occurs in
Dum and is approximated in Dee. In Dee the
aortic arch is reduced and in Dum it is absent.
In the latter the functional aortic arch is
formed from the pulmonary trunk continued as
the ductus arteriosus or embryologically the
sixth instead of the fourth primitive aortic
arch.

The primitive aortic arch system repeated
in human ontogeny is more complicated than
the primitive cardinal venous system about the
heart. Consequently variations and
anomalies in the great arterial vessels are more
frequent than in the great veins though
anomalies in the latter are not uncommon.

Kidneys: Although anomalies of the renal
vessels are common, congenital displacement of
the kidneys is rare. In a review of 20,000
autopsies Guizetti and Pariset13 found 18
cases. Thomas14 found 5 cases in 1,800
autopsies. The latter author found the condi-
tion more frequently on the left in the propor-
tion of 65 to 36 in 101 cases.||

Because the region of the kidneys and in-
ferior vena cava, like that of the heart, is the
scene of rapid recapitulatory and tachygenetic
changes during embryonic life, it is especially
liable to developmental, accidents, such as
the persistence of early stages. As a result, a
genetically displaced kidney is nearly always
low. In our case it is both low and has failed
to assume a lateral position and rotate inward.
Specimens T.15 and T.87 from the Western
Reserve University teratological collection
which have been described by Huffman16,
illustrate further the conditions involved in
congenital renal displacements.

Additional: It is well recognized that
uniovular or identical twins are not identical.
The differences between the individuals may
be marked as in parasite-autosite monsters or
they may be slight. The degree of resem-
bance of monovular twins, especially in the
mental sphere is still under investigation.

In twins of defective constitution such as
our specimens it is to be expected that dis-
similarities would be found in the regions most
liable to developmental defects, where in our
specimens defects did occur and dissimilarities
were found. It is impossible to estimate what
measure of the defects described was due to
hereditary factors and what to environmental
influences. The work of Mall14 and Stockard17
has shown the potency of environmental con-
ditions acting at critical embryonic periods in
producing malformations in lower vertebrates.
It is certain, too, that even in the uterus litter
mates are not affected by precisely the same
environmental influences.

Summary

1. In newborn male monovular twins of
probable luetic parentage, bilateral total
cheilognathoschisis and anomalies of the great
vessels of the heart, a kidney, a lung, and a
testis are described.

2. In selected features resemblances and
dissimilarities between the two infants are
indicated.

3. The findings are discussed in relation to
their causation, hereditary and environ-
mental influences.

REFERENCES

1Lévy, G.: Bec de Lièvre Chez des Jumeaux Uni-
2Fröbelous: Sitzungsprotocole des Vereins Prakti-
Zeitschr., 9, 173, 1865.
3Haug, G.: Beitrag zur Statistik der Hasenscharten,
4Davis, J. S.: The Incidence of Congenital Clefts of
5Peron, R. H. M.: Frequence des Fissures Congenti-
tales de la Lèvre et du Palais. Chaumont. (Thesis for
Doctorate in Medicine, Faculty of Medicine of Paris),
1929.

1The position of the lateral incisor in cases of total harelip
shows considerable variation, occurring both in the medial nasal
and maxillary processes. Keith10 has seen this member straddling
the cleft. It is probable that the dental lamina as a dermal deriv-
itive possesses some developmental independence of the nasal and
maxillary processes.

2Quoted by Cobey.

N. B.—The writer is grateful to Dr. N. W. Ingalls for critically reviewing the contents of this article.