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BULLETIN OF
MATHEMATICAL BIOPHYSICS 

VOLUME 4, 1942

DIFFUSION AS A  FUNCTION OF AGGREGATION IN  
COLLOIDAL MEDIA

H e r m a n  B r a n s o n

H oward U niversity , W a sh in g t o n , D. C.

With the assumption that adsorption is a simple function o f surface 
area, an analytical treatment is given for the dependence o f the diffusion 
coefficient o f an adsorbable solute upon the degree o f aggregation of the 
adsorbing colloid. A  simple relation is deduced a fter introducing some 
approximations. Some implications o f the final diffusion equation are 
given.

The effects which colloids may have upon diffusion have been 
discussed qualitatively by N. Rashevsky (1938) and the specific prob
lem of the adsorption of a diffusing* solute by a single type of colloid 
has been treated by J. M. Reiner (1939). This note reports an investi
gation of a general phenomenon in a colloidal medium: with the 
assumption that adsorption is a simple function of surface area what 
could we expect to be the effect upon the diffusion coefficient of an 
adsorbable solute of the continued aggregation of the adsorbing 
colloid. This discussion proceeds under some plausible assumptions 
which simplify the analysis. The results are finally related to certain 
membrane phenomena of the cell.

The system we consider has initially simple, colloid particles and 
solute particles. The primordial colloid particles coalesce giving larger 
particles of uniform surface, uniformly distributed. I f  the initial 
number of simple colloid particles is designated by N c and the initial 
number of neutral solute by N s, the relationships which must always 
be met are

N s= n s +  2  2  ln ( l ,a,k)
i=i &=i 

r m

N c — 2  2  k [n ( c , k )  +  n(l ,  a, Jc)~\ ,
1=1 k=l

(1)

where n( l ,a ,k )  designates the number of /c-th-aggregated colloid par
ticles with l adsorbed solute particles, n( c ,k )  is the fc-th-aggregated 
colloid particles having no adsorbed solute particles, and ns is the 
number of solute particles not adsorbed. The types of possible re-
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2 DIFFUSION IN COLLOIDAL MEDIA

actions taking place in the system may be written

n(c, 1) +  ns n (  1, a, 1)

n(  1 , a, 1) +  n(c, 1) -> n(  1 , a, 2) 
........................................  (2)
n (c , i )  +  n ( c , j )  -> n(c, i +  j )

n( i ,  a, r )  +  n8-> n ( i  +  1, a, r )

provided i +  1 ^ r2/3. This condition is explained below. The first 
three reactions express the general assumption that a solute particle 
may be adsorbed by a single colloid particle but that the aggregate 
cannot adsorb another solute particle until the surface is at least 
twice the surface of the single colloid particle. Any other reaction of 
agglomeration is possible in the system so long as it does not violate 
this principle.

Nevertheless two particles having such a number of adsorbed 
particles that the complex formed by their agglomeration would have 
more than the allowed number of adsorbed solute particles were they 
all retained, can still agglomerate with the release of solute particles. 
This is expressed by adding to (2)

n(  1, a, 1) +  n ( l ,  a, 1) -» n(  1, a, 2) +  ns 
.......................................................................... (3)

n(k, a, m)  +  n( j ,  a, r )  -> n(q, a, m +  r )  +  lns

w h e r +  r ) 2/3 — 1 < q ^ (m +  r ) 2/3, k +  j  =  q +  l .
4%:r simplicity the reactions are assumed to be irreversible. With 

these assumptions the maximum number of adsorbed particles is 
easily deduced. I f  we let vl9 , and si represent the volume, radius 
and surface of a single colloid particle and , rk, and sk the same for 
an aggregate of k particles, we have

4
vk — — nrk3 ; sk — ijirk2

vk =  kv1

since the k aggregate to form a spherical cluster, kr^ =  rkz thereupon 
sk =  4jifc2/3r12 =  k2/3s±. The maximum number of adsorbed solute par
ticles on an aggregate of k colloid particles is

l =  k2f3 if  k is an integer,

k2/3 — 1 <  l <Jc2/3 if k is not an integer, 
which we have already used in (2) and (3 ).
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Some hint as to possible numerical values for the maximum num
ber of colloidal particles which may aggregate before flocculation can 
be taken from the specification of the range of colloidal particle size, 
the diameters ranging from 10~7 to 10~5 cm. Assuming that our prim- 
oridal colloid particle has the smaller diameter and the largest the 
larger, we have the maximum for m oo 106 and the maximum for 
r cnd 104.

The solute particles are taken as uncharged so Fick’s law for the 
transport of solute is

r m

J =  J s  +  '22 / ( 1 , « , * ) ,  (4)
Z=1 k=l

in which J is the number of solute particles passing through unit sur
face in unit time whether as simple solute or in aggregate. The l , k , 
r , and m are the same as in (1 ). The J ( l , a , k) may be written

J ( l  , a , k) — — D ( l  , a , k) grad n( l  , a , k ) .  (5)

Introducing (5) into (4) with the corresponding forms for Js and 
J ( l , a,  k) and with the dependence of n8 and n ( l , a , k) on the posi
tional coordinates expressed through N s, we have

or

— D  grad N s — — Ds grad ns — 2  2  D ( l , a , k )  grad n( l ,  a ,k )
i=i fc=i

„ '3», r m Jc)
D =  D. —  + 2 2 D ( l , a , k ) - V  ’ • (6)
oJya i= i fc=i o

D is the effective diffusion coefficient of the solute. Using (1) this be
comes

D =  DS
l-1 k=i 3 N s

+ 2  H D ( l ,  a, k)
1=1 k=l

3 n(l,a, k) 
3~N.

(7)

Inasmuch as the adsorbed solute particles do not appreciably affect 
the bulk of the colloid aggregates we may take D ( l , a , k) — I )  (c , k) 
for all values of k . Furthermore on the basis of Einstein’s law of dif
fusion the diffusion coefficient of an aggregate of h colloid particles is 
related to that of an aggregate of one solute particle and one solute 
particle by

D ( c , h )
D ( c  ,1)

( 8 )
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These substitutions simplify (6). There remains, however, the rather 
complex double summations. We can approximate them through

r m
2  l n ( l , a , k) P ( p ) n ( r , a, p)(9)
Z=1 k- l  

r m
' £ ' 2 ,n ( l , a , l c )<x>a. (p )n ( r ,a ,p ) .  (10)
Z=1 k=i

Without reference to the coefficients or to the first and last symbols 
in the parentheses we see that the n(L a, k) are merely the number 
of particles of each size group in the system. The mechanism here 
described places all the particles initially in n(  1, a, 1), thus initially 
(10) could be replaced by n ( l ,  a, 1). As time goes on, other 
n(l,  ci, k ) ’s will arise but the most unlikely distribution, one per
fectly flat, would lead to a multiplicative factor equal to the number 
of particle sizes. For any other distribution the factor for any p would 
be in general a function of p but less than p . The factor /}(p) would 
behave in the same manner, although the numerical value would be 
different from that of a(p) .  We can relieve ourselves from too much 
specificity by putting

a(p)  = p a, a < 1; /3(p) =  p6, & ^ 1 .

On closer inspection, (10) is seen to be equivalent to replacing the 
size-distribution curve by a rectangle of height n ( r , a , p)  and width 
a(p) .  In (9) we replace the three dimensional distribution by a solid 
of cross-sectional area fi (p)  and height n ( r , a, p) .  It is of interest 
to observe that p will be a function of time, for the distribution curve 
of particle size will move towards the maximum size with increasing 
time. Instead of the variation of n ( r , a , p)  with time we think it 
best to keep p , which we shall call the degre^ of aggregation, as the 
independent variable.

I f  N s > N c then practically all the N c will be used as n ( l , a,  1) 
before the formation of any higher associated particles. This permits 
the division of the problem into two sections, the initial aggregation 
to form n(  1, a , 1) and the subsequent reactions to form higher ag
gregates. This first is essentially J. M. Reiner's problem. Both are 
contained in our analysis as we see upon introducing the approxima
tions and the relations

n(l ,  a,p)
n( l , a , l )  N c

p
and N c =  e N 8, e < 1,

whence
V
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D =  Da
0 n( l ,  a, -i

+
D ( l , a , l )
p(2/3 -  b) dWs

=  DS 1 -
E

p ( l -  a) ] s D ( l ,  a, 1)
2>(5/3 — 6) '

(ID

In terms of time, (11) holds from t\ to tm where (ti. — t0) would be 
the time required for all N c to become 1) and — fi would
be the time for the formation of maximum size. For i Rein
er’s (3) holds

D =  DS
0 n(  1, a, 1)

D ( l , a ,  1)
0w’( l , a ,  1)

dWo

which is observed to be the same as our (11) with =  1. Repre
sented graphically these equations join exactly at =  1 as is shown 
in Figure 1.

The removal of the assumption that N s > N c and the precise se
quential reactions do not influence the shape of the curve. This would 
not contradict (3) so long as the binding energy of colloid for colloid 
is not considerably greater than that of colloid for solute. It may 
cause a smoother transition at the minimum and a raising of the mini
mum so that D does not reach D (1 , a , 1). Furthermore we need not 
limit the number of adsorbed particles to one for the surface area of 
a simple colloid particle. I f  we would consider the number of adsorbed 
particles per cm2, then the resulting curve for the variation of the dif
fusion coefficient would probably have the same shape. We may also 
weaken the requirement that the agglomeration gives spherical par
ticles by introducing a shape factor y, so that

s,<c =  yk2/3 S i, k1/s > 7  = 1.

The shape factor will be a function of k , the number of particles in
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the complex. With our assumptions the inclusion of this factor would 
raise the maximum for 1 with a given k to y k2/3 — 1 < l g  y k2/3 but 
would cause no change in the other equations.

E. L. MacBain’s data on the diffusion coefficient of long chain 
sulfonic acids, C10 to C14, exhibit a minimum at dilute solution fol
lowed by a rise at higher concentrations. The curve is similar to 
Figure 1 but the data do not seem susceptible to interpretation by our 
mechanism These experiments are instructive, however, in calling 
our attention to the fact that the D-p curve in Figure 1 could be trans
ferred into a ^-concentration curve. Since the aggregation is directly 
proportional to the concentrations by measuring the diffusion coeffici
ent of various concentrations of N s and N c a test of the mechanism 
outlined here could be carried through so long as the degree of ag
gregation does not vary appreciably during an experimental deter
mination.

I f  the reaction takes place within a cell we may take N s — qst and 
N c =  qct where the q’s are the average rates of production of the so
lute and the adsorbing particle within the cell. In (11) e would be 
qc/qs . For sufficiently rapid aggregation the action of this mechan
ism within a cell may give a purely physical interpretation of certain 
trigger mechanisms and other aspects of cellular behavior.

The rather simple extension that the presence of ns primes the 
release of nc in spurts gives a sinusoidal curve for the variation of 
the diffusion coefficient.

Finally the view that the diffusion solute lowers the permeability 
of the cell membrane to another diffusing substance admits a varia
tion of the membrane permeability, h , inverse to that of D in Fig
ure 1.

The author wishes to express his thanks to the Julius Rosenwald 
Fund for a grant which supported this investigation. He wishes also 
to acknowledge the helpful suggestions of Prof. N. Rashevsky out of 
which came this problem and the discussions with the University of 
Chicago group of mathematical biophysicists. The author is especial
ly indebted to Dr. Alvin Weinberg who read the paper and made some 
valuable suggestions.
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