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BULLETIN OF
MATHEMATICAL BIOPHYSICS 

VOLUME 4, 1942

DELAYED ADSORPTION AND DIFFUSION IN 
COLLOIDAL MEDIA

H e r m a n  B r a n s o n
H oward U n iv e r sit y , W a s h in g t o n , D . C.

The behavior of the diffusion coefficient of a solute which can be ad­sorbed by a colloid only after the colloid has aggregated to a certain size is deduced on the basis of a few assumptions. Some relations of such a mechanism to cell reactions are indicated.
A type of reaction plausible in cell behavior is one in which two 

or more substances may be released under a stimulus. This paper 
considers such a release with two substances one of which can aggre­
gate into larger micelles and upon reaching an optimum size adsorbs 
the second substance, which we call the solute. After this initial ad­
sorption we may consider either no further aggregation and adsorp­
tion or further aggregation with adsorption as being the possibilities 
of greatest interest. For our purposes the significant point is what 
effect these alternative possibilities have upon the diffusion coefficient 
of the solute. In addition, we indicate how this mechanism may be 
used to interpret certain reactions in a cell, e.g. reactions which begin 
at a certain rate, proceed at that rate for some time, and then fall to 
a minimum.

The aggregation of the colloid particles is assumed to take place 
in'the following chain:

+ u-l -> n2 , 
n2 -r nx -> n3,

( i )

where nm is the size at which adsorption of the solute occurs. This 
chain expresses the assumption that a higher aggregate is formed 
from the next lower by the adjoining of a simple micelle, in short 
there is no aggregation of higher aggregates with each other. We
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132 DIFFUSION IN COLLOIDAL MEDIA

shall consider first the mechanism which allows no aggregation after 
adsorption. The differential equations for this chain are

dnxj ,  --  kx Mx2 k2 Mx M2at JCm-i Mx Mm-1 y

dn2 _  kx nx2 
~dt 2 k2 W'l M2 j

dne—  =  ke.x nx ne- 1  -  ke nx ne,
( 2 )

dnm_
~dt~ ■ k m-x Mx 1 •

On making the substitution nx d t =  d x these equations are trans­
formed into the linear forms

dnx
dx 1

dn2 _ K
dx 2

dnr kmdx

nx — k2n2,

km-1 M’m—x.
The characteristic equation of this set is

A + k2 k$ . . • • km~i 0
k± X + k22 0 ................  0

0 k2 X + k3 . .
=  0

(3)

(4)

A simple relationship is found between the determinants of each or­
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der. Consider for 3 we have

D, ( A )  =
k +  kx 

2

k2
A +  A^

observe that
z > a ( A )  =  (A  +  & 3 ) D 2 ( A )  + h h h . t

and in general
Z *e ( A )  =  ( A ) * * * Âe

2 (5)
Inasmuch as we shall not treat the general case, except to observe 
that the physical conclusions will probably not be much different for 
large values of m,we can state that in order to be physically mean­
ingful the solutions of equation (3)

nk — 2  ex>* ( 6 );=i
satisfy the boundary conditions at all values of time

m2  k n k =  n1
Since x and not time occurs in equation (6), we see that it is not nec­
essary that the real part of the A be negative. From the defining equa­
tion for x , we have x —> x0, a:0 finite, nx 0, then t(x )  oo ; thus 
an infinite time is required for all the nx to disappear even though the 
x0 is finite.

All the information needed for our purpose can be had from a 
detailed treatment of the set for 3 . That is there will be an
aggregate of three colloid particles built up before adsorption of the 
solute occurs. The problem immediately suggested is the relative be­
havior of nx and n2. This behavior can be obtained from the integral 
curves. Using the notation of L. R. Ford (1933),

dn2 

dnl
nx +  k2

kx nx +  A;2 ih
A =  (kx +  Af2 ) 2 —  6  .

(7)

Since A;, +  k2 ¥= 0 , the integral curves are not conics.
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For
where

il41 I 1 il42 • "̂2 ^

î l.2 -  ( f c j  -  fc2 )  ±  y z l
2 fc2

the integral curves are shown in Figure 1.
( 8 )

F igure 1
These solutions are physically well-behaved in that all show that 

either nx disappears before n2 or they disappear together. But the 
presence of n2 after the disappearance of , makes it impossible for 
all of n2 to be transformed into n3. Thus for the simple case of a*, 
n2, a3 , we can expect as a resultant state only a3 or a mixture of n2 

and ns . The first will result if k2 > and ^ 0 . The will be de­
termined by the reaction, hence in a specific experiment we can ex­
amine the products present after sufficient time which will decide 
whether n2 and a 3 or only a3 remains.

An alternative treatment of the integral curves which is imme­
diately applicable to the general case has been suggested in a letter 
by Dr. A. S. Householder. From the conditions, the integral curves 
in the n2, n± plane are confined to the region bounded by the coordi­
nate axes and the line nx +  2 n2 — a0. Since da, < 0 for any a, 
and n2 not both zero, the integral curve can cross the n2 axis (a, =  0). 
While for n2 =  0 , unless n1 =  0 simultaneously, the integral curve is 
directed into the region. The scalar product of the vector with the
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normal is —3k2n2 which is always negative for > 0 . Initially 
n2 =  0 and nx =  n0, thus the curve begins at the intersection of the 
line nx +  2n2 =  n0 and the nx axis; the integral curve is tangent to the 
line and directed upward from the nx axis. As n2 builds up the inte­
gral curve turns inward away from the line nx +  2n2 =  n0.

The general set is treated in the same manner. Here the integral 
curves are confined to the region bounded by the m—1 coordinatem-lhyper-planes and the hyper-plane 2  h n \ — na. The integral curve can1cross the hyper-plane nx — 0 for always d n jd x  < 0 . But when nk 
— 0 , k 1 , dnk/dx  =  kk.x nk-x > 0 unless nk.t is also 0; but if nk.x is 
0 , dn ^ /dx , > 0 , etc., until we meet an nr ^  0 . Hence if any nk, 
k¥= 1, approaches zero the integral curve turns toward a region where 
the nk is increasing. Finally the scalar product of the tangent and the 
outward normal is — (m— nm-x which completes the proof that 
for a finite x , but an infinite t , nx vanishes in the general case; and 
although some of the other n’s may vanish simultaneously with nx, 
they cannot vanish ahead of .

The solutions of the set satisfying the boundary conditions
nx + 2n2 +  Sn3 =  n0 ,

and at x =  0 , nx =  n0 where n0 is the initial number of simple colloid 
particles, are

where

no r 
h -X 2[

n 2 ^ o ( ^ l  ^ l )  (^2 ~t" ^ l )

n2 — •— 1 +
Â2 (Ai A2 )

3(A i +  k x) (12 +  &i)

g X i X  —  g X ’i X

X A h - h ) ex*x

3 (A, +  fti) (A* +  fci) I------------------------ - ex&Â (Ai A?)
— (fci +  k.) ±

The relation between xand is »i

(9)
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where x =  0 when t =  0 . Before the integration can be performed 
the upper limit must be fixed. Calling this upper limit x and recalling 
that we are concerned about the value of the time from the beginning 
of the reaction until the appearance of the first particle capable of 
adsorbing a solute particle, we have on introducing — 1 into (9) 
and calling the coefficients of exponentials a and p respectively

3/fto =  1 + a eXlX — ft ex* . (10)
This equation cannot be solved explicitly for x . Making the substi­
tutions

Vi — a ex'x +  1 -  3/n0,
y2 — P ek2X ,

we can solve graphically if we have numerical values for a , p, and 
7io. Taking nQ =  1000, k2 =  4 kx =  4 k then A =  k2, ^  =  — 4 k , 
X2 =  — 6 k and we find a =  — 5.55 , p =  3.75 . Substituting these 
values we have x =  0.48/A;

T ~  1000 J 5 - 3  ^ X

where t is the time required for the first n?> to appear in the system. 
Integrating numerically by using Simpson's rule, we find

T =  48.18/1000 k secs. (11)
Our analysis culminating in (11) can be summarized: when the 

aggregation takes place according to (3) with m '=  3 , at the end of 
48.18/1000 lc secs, the particles capable of adsorbing solute particles 
appear in the system. Before their appearance, the other colloid par­
ticles would have negligible effect upon the diffusion coefficient of the 
solute. After their appearance, however, they would act to reduce 
the value of D according to J. Reiner's curve (1939). The effect is 
shown in Figure 2a. If the aggregation continues with the number 
of adsorbed solute particles a function of the surface area as in an

a b
F igure 2
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earlier paper (H. Branson, 1942), we would have the variation rep­
resented in Figure 2b.

In order for the mechanism to be applicable to cellular reactions, 
t has to be in general small, except for some reactions where it may 
be of the order of a second. From physical considerations we see that 
A; is a function of the diffusion coefficient and the radius of the aggre­
gating particles; M. V. Smoluchowski (1918) found for a colloid so­
lution k  =  4 n t D . Introducing values given in that paper from 
Zsigmondy’s experiments we have k  ^  10 12 and t 1010 secs. Thus 
unless the diffusion coefficient within the cell is considerably larger 
than in solution, this reaction gives an inordinately long time for the 
beginning of the decrease in the diffusion coefficient. More plausible 
values of r can be obtained by considering n0 to be much larger in 
(10). Raising n0 to 107 causes practically no change in x , and taking 
r co 10"6 cm then for D of the order of 103, r will be of the order of a 
hundredth of a second. This is not an unreasonable value of D for 
aggregations where the binding energy is large.

The author wishes to express his thanks to the Julius Rosenwald 
Fund for a grant which supported the initial steps in this problem. 
His thanks are again extended to Prof. N. Rashevsky and the Uni­
versity of Chicago group of mathematical biophysicists, especially Dr. 
A. S. Householder, for discussions and suggestions.
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